Advancing Multi-Agent
Reinforcement Learning for
Collaborative Coding Agents

*Kanav Gupta
SCAI
Arizona State University
Tempe, Arizona, USA

kgupta72@asu.edu

*Dhruv Bansal

SCAI SCAI

Arizona State University
Tempe, Arizona, USA

dbansall@asu.edu

*Sameer Kamble

Arizona State University
Tempe, Arizona, USA

srkamble@asu.edu

* Equal Contribution

Abstract

Complex programming tasks challenge single-agent LLM
systems since they require deep understanding, planning, and
iterative debugging. Most existing multi-agent frameworks
depend on static prompting or manually designed pipelines,
struggling with dynamic communication, credit assignment, and
scalability.

We develop a multi-agent framework driven by reinforcement
learning for cooperative coding agents. A Centralized Training
Decentralized Execution (CTDE) approach enables multiple
LLMs to collaborate in efficiently planning and executing coding
tasks.

Our aim is to improve the traditional LLM’s and Agent
implementation using the complexity of Reinforcement Learning
in a controlled environment.

1 Introduction

Large Language Models (LLMs) demonstrate strong capabilities
in natural language reasoning and code synthesis, but single-agent
systems often struggle with complex programming tasks
requiring decomposition, multi-step planning, iterative
debugging, or feedback integration. Multi-agent LLM systems
have recently emerged as a promising direction, enabling role
specialization, communication, and collaborative
decision-making [1, 2, 3].

However, most systems, such as MapCoder [3], ChatDev [2], and
AutoGen [1], depend heavily on manually engineered pipelines
rather than learning-based coordination. Reinforcement Learning
(RL), especially in multi-agent settings, has not been widely
applied to collaborative coding, with only limited progress from
frameworks like Co-Learning [4], MAGRPO [5], and TF-GRPO
[6].

We fill this gap by designing a reinforcement-learning-based
multi-agent framework that enables LLM agents to coordinate
adaptively using CTDE, collaborative decision-making, and
shared rewards driven by test-case outcomes. We enhance the
MARL architecture by employing two agents (helper and main)
and using Multi-Agent Group Relative Policy Optimization
(MAGRPO) that trains multiple LLMs jointly through centralized
group-relative advantages while maintaining decentralized
execution efficiency.

Modeling LLM collaboration as a cooperative MARL problem
and training with MAGRPO yields adaptive, sample-efficient
systems capable of solving challenging programming tasks
through learned coordination strategies rather than
hand-engineered pipelines.

2 Related Work
2.1 Multi-Agent Collaboration

Multi-agent LLM frameworks demonstrate that structured roles
and communications can improve code generation and debugging.
AutoGen [1] enables multi-agent conversation but relies on
prompt engineering rather than adaptive learning. MapCoder [3]
uses specialized agents for retrieval, planning, coding, and
debugging, achieving strong benchmark results but following a
fixed pipeline. ChatDev [2] models a full software development
workflow using designer, coder, tester, and documenter agents,
but lacks dynamic coordination. Co-Learning [4] introduces
test-driven reinforcement to choose agents based on code
correctness, though it depends on handcrafted rewards and a small
dataset.

Communication and role specialization are effective, but none of
these frameworks support learning-based scheduling, credit
assignment, or scalable adaptive coordination.

mailto:kgupta72@asu.edu
mailto:dbansa11@asu.edu
mailto:srkamble@asu.edu

2.2 Reinforcement Learning in Multi-Agent
LLM Systems

Few studies apply reinforcement learning to collaborative LLM
coding. Co-Learning [4] uses Environmental RL to reward
correct outputs but does not train agents jointly. Training-Free
GRPO [6] offers lightweight relative policy updates without
pretraining, reducing computation but remaining limited to
synthetic benchmarks.

These approaches show early success but do not yet scale to
heterogeneous coding agents, motivating the need for a
CTDE-driven multi-agent framework.

3 Data

Our project uses the HumanEval dataset to support code
generation evaluation, multi-agent coordination, and
reinforcement learning for debugging.

3.1 HumanEval

Source: OpenAl HumanEval Benchmark

Purpose: Evaluating Functional correctness of generated Python
code using unit tests

Size: 164 programming tasks and test cases

Why We Use It: HumanEval serves as the standard benchmark
for assessing LLM coding performance. It allows direct
comparison with established multi-agent systems such as
MapCoder (Islam et al., 2024) and MAGRPO (Liu et al., 2025).

Dataset Split: HumanEval is typically evaluated as a fixed test
set. We follow a standard practice:

o 75.76% train (25/33 ratio)

o 24.24% test (8/33 ratio)

4 Methods

Our approach combines the multi-agent architecture from
Co-Learning with the Multi-Agent Group Relative Policy
Optimization (MAGRPO) algorithm for end-to-end reinforcement
learning. We conduct a systematic evaluation progressing from
baseline single-agent systems to fully coordinated multi-agent
systems with reinforcement learning.

Our system consists of two specialized agents (main and helper)
that work together to solve programming problems. Each agent
operates with partial knowledge of the complete system state,
observing different aspects of the problem-solving process based
on its role.

4.1 Multi-Agent Architecture

Our system instantiates two specialized LLM agents, each
with distinct roles in the collaborative coding workflow:

Helper Agent (Agent 0): Generates utility/helper

functions that decompose the problem into manageable sub-
components. The helper agent receives the problem descrip-
tion and entry point, then produces auxiliary functions that
the main agent can leverage.

Main Agent (Agent 1): Receives both the original prob-

lem prompt and the helper code generated by Agent 0. It then
completes the target function, potentially utilizing the helper
functions to construct the final solution.

4.2 MAGRPO Algorithm

We adapt Group Relative Policy Optimization (GRPO) to
multi-agent settings as described in [5]. At each training
episode:

1. Sample a problem and initialize state

2. Foreachturnt € [0, H— 1]:
a. Generate G diverse solutions per agent
b. Execute actions and compute rewards
c. Store trajectory data

3. Compute group-relative advantages: 4,4 = R® -
mean(R))

4. Update policies using policy gradient with loss: L =
—A-log n0(alh)

We use Qwen2.5-Coder-3B as our base model. Our im-
plementation differs from [5] in several ways: they use
Qwen2.5-Coder-7B (larger model), a tree-like structure for
rollouts, discounted returns with configurable discount (y =
0.9), and multiple optimizer steps per tree node.

S Experiments

Hardware: 1x NVIDIA A100 (40GB or 80GB), 2x AMD EPYC
7413 processors (24 cores each), 503 GiB RAM total, Rocky
Linux 8.10 (Green Obsidian)

Base Model: Qwen2.5-Coder-3B (bfloat16)

Dataset: HumanEval

5.1 Evaluation Protocol

1. Baseline Single Model: The base Qwen2.5-Coder-3B
model without any fine-tuning. For each problem, we
generate k independent solutions using temperature
sampling (temperature=0.8) via the vLLM inference
server. Each solution is generated from the problem
prompt alone, with code extracted from the model's
response. This establishes our baseline Pass@k
performance for a single untrained agent.

2. Baseline Multi-Agent: Two instances of the same
Qwen2.5-Coder-3B model working in sequence without
RL training. Agent O (helper) receives a specialized
prompt asking it to generate a helper function for the
problem. Agent 1 (main) then receives both the original
problem and the helper's generated code, completing the
target function. This tests whether role decomposition
through prompting alone improves performance over
the single-agent baseline.

3. GRPO Single-Agent: A single Qwen2.5-Coder-3B
model trained using Group Relative Policy
Optimization. The model generates G candidate
solutions per problem, receives rewards based on code
correctness (+0.5 for runnable code, +0.1 per passed
test up to 5 tests), and updates using group-relative
advantages. Training runs for multiple epochs over the
training split, with the final model evaluated on the test
set.

4. Multi-Agent GRPO: Our full system with two
specialized agents (helper and main) trained jointly
using MAGRPO. Both agents share the same reward
signal based on the combined code's correctness. The
helper agent learns to generate useful auxiliary
functions while the main agent learns to leverage them
effectively. Rewards are computed on the combined
output: +0.2 for syntactically valid code, +0.3 for
runnable code, and +0.1 per passed test. Agents are
updated using centralized group-relative advantages
while maintaining decentralized execution.

5.2 Metrics

Pass@k: Probability that at least 1 of & solutions passes all tests:

pass@k =]Epmblcms [1 — (f‘L]
(x)

where 7 is the total number of samples, ¢ is the number of correct
samples, and £ is the number of samples considered.

6 Results
Method Pass@1 Pass@3 Pass@5 Pass@10
Single Model 29.25% 53.02% 63.11% 72.50%
Multi-Agent 24.00% 49.50% 61.94% 75.00%
GRPO 14.50% 3096% 40.96% 55.00%
MAGRPO 44.25% 65.23% 7229% 80.00%

Table 1: Results on 40/164 HumanEval problems with 10 samples
per problem.

6.1 Discussion

Our results reveal several key insights:

1. Multi-Agent MAGRPO achieves the best
performance across all Pass@k metrics, with a 51%
relative improvement in Pass@!1 over the single-agent
baseline (44.25% vs 29.25%).

2. Baseline multi-agent underperforms the single-agent
baseline at lower k values (24% vs 29.25% at Pass@]1),
suggesting that naive role decomposition through
prompting alone can introduce coordination overhead.

3. Single-agent GRPO shows degraded performance,
likely due to small model size and limited training data,
which may cause mode collapse. This could also be
attributed towards small group size (G) of only 4.

4. MAGRPO’s joint training is important. The
improvement from baseline multi-agent to MAGRPO
shows that learned coordination — significantly
outperforms static prompting-based collaboration.

7 Conclusion

We presented a multi-agent reinforcement learning framework for
collaborative code generation using MAGRPO. Our results
demonstrate that jointly training specialized agents (helper and
main) with shared rewards substantially outperforms both
single-agent baselines and prompt-based multi-agent systems.

The key finding is that learned coordination through MAGRPO
enables effective collaboration that static role assignment cannot
achieve. While baseline multi-agent systems may struggle with
coordination overhead, RL training allows agents to develop
complementary strategies that leverage each other's outputs
effectively.

Future work includes scaling to larger models, exploring more
complex agent hierarchies, and extending evaluation to additional
benchmarks.

References

1. Q. Wuetal, “AutoGen: Enabling Next-Gen LLM
Ap-plications via Multi-Agent Conversation,”
arXiv preprint arXiv:2308.08155, 2023.

2. C.Qian et al.,, “ChatDev: Communicative Agents
for Software Development,” arXiv preprint
arXiv:2307.07924, 2023.

3. M. A.Islam et al., “MapCoder: Multi-Agent Code
Genera-tion for Competitive Problem Solving,” in
Proc. 62nd Annual Meeting of the ACL, 2024.

4. J. Yuetal., “Co-Learning: Code Learning for
Multi-Agent Reinforcement Collaborative
Framework,” arXiv preprint arXiv:2409.00985,

2025.

S. Liu et al., “LLM Collaboration with Multi-Agent
Reinforce-ment Learning,” arXiv preprint
arXiv:2508.04652, 2025.

Y. Cai et al., “Training-Free Group Relative Policy
Optimiza-tion,” arXiv preprint arXiv:2510.08191,
2025.

M. Chen et al., “Evaluating Large Language
Models Trained on Code,” arXiv preprint
arXiv:2107.03374,2021.

S. Lu et al., “CodeXGLUE: A Machine Learning
Benchmark Dataset for Code Understanding and
Generation,” in NeurIPS Datasets and Benchmarks
Track, 2021.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Multi-Agent Collaboration

	
	2.2 Reinforcement Learning in Multi-Agent LLM Systems

	3 Data
	3.1 HumanEval

	4 Methods
	4.1 Multi-Agent Architecture
	4.2 MAGRPO Algorithm

	5 Experiments
	5.1 Evaluation Protocol
	5.2 Metrics
	
	6.1 Discussion

	7 Conclusion

