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Abstract 

Complex programming tasks challenge single-agent LLM 
systems since they require deep understanding, planning, and 
iterative debugging. Most existing multi-agent frameworks 
depend on static prompting or manually designed pipelines, 
struggling with dynamic communication, credit assignment, and 
scalability. 
 
We develop a multi-agent framework driven by reinforcement 
learning for cooperative coding agents. A Centralized Training 
Decentralized Execution (CTDE) approach enables multiple 
LLMs to collaborate in efficiently planning and executing coding 
tasks. 
 
Our aim is to improve the traditional LLM’s and Agent 
implementation using the complexity of Reinforcement Learning 
in a controlled environment.  
 

1 Introduction 
Large Language Models (LLMs) demonstrate strong capabilities 
in natural language reasoning and code synthesis, but single-agent 
systems often struggle with complex programming tasks 
requiring decomposition, multi-step planning, iterative 
debugging, or feedback integration. Multi-agent LLM systems 
have recently emerged as a promising direction, enabling role 
specialization, communication, and collaborative 
decision-making [1, 2, 3]. 
 
However, most systems, such as MapCoder [3], ChatDev [2], and 
AutoGen [1], depend heavily on manually engineered pipelines 
rather than learning-based coordination. Reinforcement Learning 
(RL), especially in multi-agent settings, has not been widely 
applied to collaborative coding, with only limited progress from 
frameworks like Co-Learning [4], MAGRPO [5], and TF-GRPO 
[6]. 
 

We fill this gap by designing a reinforcement-learning-based 
multi-agent framework that enables LLM agents to coordinate 
adaptively using CTDE, collaborative decision-making, and 
shared rewards driven by test-case outcomes. We enhance the 
MARL architecture by employing two agents (helper and main) 
and using Multi-Agent Group Relative Policy Optimization 
(MAGRPO) that trains multiple LLMs jointly through centralized 
group-relative advantages while maintaining decentralized 
execution efficiency. 
 
Modeling LLM collaboration as a cooperative MARL problem 
and training with MAGRPO yields adaptive, sample-efficient 
systems capable of solving challenging programming tasks 
through learned coordination strategies rather than 
hand-engineered pipelines. 
 

2 Related Work 
 
2.1 Multi-Agent Collaboration 
 
Multi-agent LLM frameworks demonstrate that structured roles 
and communications can improve code generation and debugging. 
AutoGen [1] enables multi-agent conversation but relies on 
prompt engineering rather than adaptive learning. MapCoder [3] 
uses specialized agents for retrieval, planning, coding, and 
debugging, achieving strong benchmark results but following a 
fixed pipeline. ChatDev [2] models a full software development 
workflow using designer, coder, tester, and documenter agents, 
but lacks dynamic coordination. Co-Learning [4] introduces 
test-driven reinforcement to choose agents based on code 
correctness, though it depends on handcrafted rewards and a small 
dataset. 
 
Communication and role specialization are effective, but none of 
these frameworks support learning-based scheduling, credit 
assignment, or scalable adaptive coordination. 
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2.2 Reinforcement Learning in Multi-Agent 
LLM Systems 

Few studies apply reinforcement learning to collaborative LLM 
coding. Co-Learning [4] uses Environmental RL to reward 
correct outputs but does not train agents jointly. Training-Free 
GRPO [6] offers lightweight relative policy updates without 
pretraining, reducing computation but remaining limited to 
synthetic benchmarks. 
 
These approaches show early success but do not yet scale to 
heterogeneous coding agents, motivating the need for a 
CTDE-driven multi-agent framework. 
 

3 Data 

Our project uses the HumanEval dataset to support code 
generation evaluation, multi-agent coordination, and 
reinforcement learning for debugging. 

3.1 HumanEval  
Source: OpenAI HumanEval Benchmark 
Purpose: Evaluating Functional correctness of generated Python 
code using unit tests 
Size: 164 programming tasks and test cases 
 
Why We Use It: HumanEval serves as the standard benchmark 
for assessing LLM coding performance. It allows direct 
comparison with established multi-agent systems such as 
MapCoder (Islam et al., 2024) and MAGRPO (Liu et al., 2025). 
 
Dataset Split: HumanEval is typically evaluated as a fixed test 
set. We follow a standard practice: 

●​ 75.76% train (25/33 ratio)  
●​ 24.24% test (8/33 ratio) 

 

4 Methods 

Our approach combines the multi-agent architecture from 
Co-Learning with the Multi-Agent Group Relative Policy 
Optimization (MAGRPO) algorithm for end-to-end reinforcement 
learning. We conduct a systematic evaluation progressing from 
baseline single-agent systems to fully coordinated multi-agent 
systems with reinforcement learning. 
 
Our system consists of two specialized agents (main and helper) 
that work together to solve programming problems. Each agent 
operates with partial knowledge of the complete system state, 
observing different aspects of the problem-solving process based 
on its role. 

4.1 Multi-Agent Architecture 
 

Our system instantiates two specialized LLM agents, each 
with distinct roles in the collaborative coding workflow: 
 
Helper Agent (Agent 0): Generates utility/helper  
functions that decompose the problem into manageable sub- 
components. The helper agent receives the problem descrip- 
tion and entry point, then produces auxiliary functions that 
the main agent can leverage. 
 
Main Agent (Agent 1): Receives both the original prob- 
lem prompt and the helper code generated by Agent 0. It then 
completes the target function, potentially utilizing the helper 
functions to construct the final solution. 

4.2 MAGRPO Algorithm 
We adapt Group Relative Policy Optimization (GRPO) to 
multi-agent settings as described in [5]. At each training 
episode: 
 

1.​ Sample a problem and initialize state 
2.​ For each turn t ∈ [0, H − 1]: 

a.​ Generate G diverse solutions per agent 
b.​ Execute actions and compute rewards 
c.​ Store trajectory data 

 
3.​ Compute group-relative advantages: At

(g) = Rt
(g) - 

mean(Rt) 
4.​ Update policies using policy gradient with loss: L = 

−A·log πθ(a|h) 
 

We use Qwen2.5-Coder-3B as our base model. Our im- 
plementation differs from [5] in several ways: they use 
Qwen2.5-Coder-7B (larger model), a tree-like structure for 
rollouts, discounted returns with configurable discount (γ = 
0.9), and multiple optimizer steps per tree node. 
 

5 Experiments 

Hardware: 1x NVIDIA A100 (40GB or 80GB), 2× AMD EPYC 
7413 processors (24 cores each), 503 GiB RAM total, Rocky 
Linux 8.10 (Green Obsidian) 
Base Model: Qwen2.5-Coder-3B (bfloat16) 
Dataset: HumanEval 
 
5.1 Evaluation Protocol 
 

1.​ Baseline Single Model: The base Qwen2.5-Coder-3B 
model without any fine-tuning. For each problem, we 
generate k independent solutions using temperature 
sampling (temperature=0.8) via the vLLM inference 
server. Each solution is generated from the problem 
prompt alone, with code extracted from the model's 
response. This establishes our baseline Pass@k 
performance for a single untrained agent. 
 



2.​ Baseline Multi-Agent: Two instances of the same 
Qwen2.5-Coder-3B model working in sequence without 
RL training. Agent 0 (helper) receives a specialized 
prompt asking it to generate a helper function for the 
problem. Agent 1 (main) then receives both the original 
problem and the helper's generated code, completing the 
target function. This tests whether role decomposition 
through prompting alone improves performance over 
the single-agent baseline. 
 

3.​ GRPO Single-Agent: A single Qwen2.5-Coder-3B 
model trained using Group Relative Policy 
Optimization. The model generates G candidate 
solutions per problem, receives rewards based on code 
correctness (+0.5 for runnable code, +0.1 per passed 
test up to 5 tests), and updates using group-relative 
advantages. Training runs for multiple epochs over the 
training split, with the final model evaluated on the test 
set. 
 

4.​ Multi-Agent GRPO: Our full system with two 
specialized agents (helper and main) trained jointly 
using MAGRPO. Both agents share the same reward 
signal based on the combined code's correctness. The 
helper agent learns to generate useful auxiliary 
functions while the main agent learns to leverage them 
effectively. Rewards are computed on the combined 
output: +0.2 for syntactically valid code, +0.3 for 
runnable code, and +0.1 per passed test. Agents are 
updated using centralized group-relative advantages 
while maintaining decentralized execution. 

 
 
5.2 Metrics 
 
Pass@k: Probability that at least 1 of k solutions passes all tests:  
​ 

 
 
where n is the total number of samples, c is the number of correct 
samples, and k is the number of samples considered.  
 
6 Results 

Table 1: Results on 40/164 HumanEval problems with 10 samples 
per problem. 

6.1 Discussion  

Our results reveal several key insights:  
1.​ Multi-Agent MAGRPO achieves the best 

performance across all Pass@k metrics, with a 51% 
relative improvement in Pass@1 over the single-agent 
baseline (44.25% vs 29.25%). 
 

2.​ Baseline multi-agent underperforms the single-agent 
baseline at lower k values (24% vs 29.25% at Pass@1), 
suggesting that naive role decomposition through 
prompting alone can introduce coordination overhead.  
 

3.​ Single-agent GRPO shows degraded performance, 
likely due to small model size and limited training data, 
which may cause mode collapse. This could also be 
attributed towards small group size (G) of only 4. 
 

4.​ MAGRPO’s joint training is important. The 
improvement from baseline multi-agent to MAGRPO 
shows that learned coordination significantly 
outperforms static prompting-based collaboration.  

 

7 Conclusion 
 
We presented a multi-agent reinforcement learning framework for 
collaborative code generation using MAGRPO. Our results 
demonstrate that jointly training specialized agents (helper and 
main) with shared rewards substantially outperforms both 
single-agent baselines and prompt-based multi-agent systems. 
 
The key finding is that learned coordination through MAGRPO 
enables effective collaboration that static role assignment cannot 
achieve. While baseline multi-agent systems may struggle with 
coordination overhead, RL training allows agents to develop 
complementary strategies that leverage each other's outputs 
effectively. 
 
Future work includes scaling to larger models, exploring more 
complex agent hierarchies, and extending evaluation to additional 
benchmarks. 
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